Number Systems

This page documents a few interesting number systems.

Preliminaries

The unified treatments below make use of generalized trigonometric functions.

Complex Number Family

Initially, we consider a few select members of the complex number family. In the process, we highlight parellels between them. Subsequently, we provide a unified perspective.

Individual Members

Let us consider the complex numbers, and two of their close relatives. Each corresponding to one choice from $\{-1, 0, +1\}$.

Complex Numbers

Cartesian Forms

Numbers of the form: $$z = a + ib$$ where:

  • $i^{2}= -1$
Resulting in multiplication table:
$\mathbf{1}$
$\mathbf{i}$
$\mathbf{1}$
$1$
$i$
$\mathbf{i}$
$i$
$-1$

Operations

Given $z = a + ib$ we have:

Addition
$$\small \begin{split}z_0 + z_1 = (a_0 + i b_0) + (a_1 + i b_1) \\= (a_0 + a_1) + i(b_0 + b_1)\end{split}$$
Additive Inverse
$$-z = -a - ib$$
Multiplication
$$\small \begin{split}z_0 z_1 = (a_0 + i b_0) (a_1 + i b_1) \\= (a_0 a_1 - b_0 b_1) + i(a_0 b_1 + b_0 a_1)\end{split}$$
Conjugate
$$\overline{z} = a - ib$$
Quadratic Form
$$|z|^2 = z\overline{z} = a^2 + b^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Polar/Exponential Forms

Substituting $i\theta$ for $x$ in $e^{x}$: $$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$ which motivates: $$z = r(\cos(\theta) + i\sin(\theta)) = re^{i\theta}$$

Operations

Given $z = r e^{i \theta}$ we have:

Multiplication
$$\small z_0 z_1 = (r_0 e^{i \theta_0}) (r_1 e^{i \theta_1}) = (r_0 r_1) e^{i (\theta_0+ \theta_1)}$$
Conjugate
$$\overline{z} = r e^{i (-\theta)}$$
Quadratic Form
$$|z|^2 = z\overline{z} = r^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{r} e^{i(-\theta)}$$

Conversions

Given $z = re^{i\theta}$ we obtain: $$ \begin{align*} a &= r\cos(\theta)\\\\ b &= r\sin(\theta) \end{align*} $$

Given $z = a + ib$ we obtain: $$ \begin{align*} r &= \sqrt{a^2 + b^2}\\\\ \theta &= \operatorname{atan2}(b,a) \end{align*} $$

Operations
Exponential

Using $e^{x+y} = e^{x} e^{y}$: $$ e^{z} = e^{a + ib} = e^{a} e^{ib} $$

Logarithm

Using $\ln(x y) = \ln(x) + \ln(y)$: $$ \ln(z) = \ln(re^{i\theta}) = \ln(r) + i\theta $$

Exponentiation

$$ z_0^{z_1} = e^{\ln(z_0) z_1} $$

Plots

All $z = a + ib$ with:

  • $|z|^2 = -1$ ($\varnothing$)
  • $|z|^2 = \phantom{+}0$ (orange)
  • $|z|^2 = +1$ (blue)

Dual Numbers

Cartesian Forms

Numbers of the form: $$z = a + \epsilon b$$ where:

  • $\epsilon^{2}= 0$
Resulting in multiplication table:
$\mathbf{1}$
$\mathbf{\epsilon}$
$\mathbf{1}$
$1$
$\epsilon$
$\mathbf{\epsilon}$
$\epsilon$
$0$

Operations

Given $z = a + \epsilon b$ we have:

Addition
$$\small \begin{split}z_0 + z_1 = (a_0 + \epsilon b_0) + (a_1 + \epsilon b_1) \\= (a_0 + a_1) + \epsilon (b_0 + b_1)\end{split}$$
Additive Inverse
$$-z = -a - \epsilon b$$
Multiplication
$$\small \begin{split}z_0 z_1 = (a_0 + \epsilon b_0) (a_1 + \epsilon b_1) \\= (a_0 a_1) + \epsilon (a_0 b_1 + b_0 a_1)\end{split}$$
Conjugate
$$\overline{z} = a - \epsilon b$$
Quadratic Form
$$|z|^2 = z\overline{z} = a^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Polar/Exponential Forms

Substituting $\epsilon\theta$ for $x$ in $e^{x}$: $$e^{\epsilon\theta} = 1 + \epsilon\theta$$ which motivates: $$z = r(1 + \epsilon\theta) = re^{\epsilon\theta}$$

Operations

Given $z = r e^{\epsilon \theta}$ we have:

Multiplication
$$\small z_0 z_1 = (r_0 e^{\epsilon \theta_0}) (r_1 e^{\epsilon \theta_1}) = (r_0 r_1) e^{\epsilon (\theta_0 + \theta_1)}$$
Conjugate
$$\overline{z} = r e^{\epsilon (-\theta)}$$
Quadratic Form
$$|z|^2 = z\overline{z} = r^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{r} e^{\epsilon (-\theta)}$$

Conversions

Given $z = re^{\epsilon \theta}$ we obtain: $$ \begin{align*} a &= r\\\\ b &= r\theta \end{align*} $$

Given $z = a + \epsilon b$ we obtain: $$ \begin{align*} r &= \sqrt{a^2}\\\\ \theta &= \frac{b}{a} \end{align*} $$

Operations
Exponential

Using $e^{x+y} = e^{x} e^{y}$: $$ e^{z} = e^{a + \epsilon b} = e^{a} e^{\epsilon b} $$

Logarithm

Using $\ln(x y) = \ln(x) + \ln(y)$: $$ \ln(z) = \ln(re^{\epsilon\theta}) = \ln(r) + \epsilon\theta $$

Exponentiation

$$ z_0^{z_1} = e^{\ln(z_0) z_1} $$

Plots

All $z = a + \epsilon b$ with:

  • $|z|^2 = -1$ ($\varnothing$)
  • $|z|^2 = \phantom{+}0$ (orange)
  • $|z|^2 = +1$ (blue)

Split-Complex Numbers

Cartesian Forms

Numbers of the form: $$z = a + jb$$ where:

  • $j^{2}= +1$
Resulting in multiplication table:
$\mathbf{1}$
$\mathbf{j}$
$\mathbf{1}$
$1$
$j$
$\mathbf{j}$
$j$
$+1$

Operations

Given $z = a + jb$ we have:

Addition
$$\small \begin{split}z_0 + z_1 = (a_0 + j b_0) + (a_1 + j b_1) \\= (a_0 + a_1) + j(b_0 + b_1)\end{split}$$
Additive Inverse
$$-z = -a - jb$$
Multiplication
$$\small \begin{split}z_0 z_1 = (a_0 + j b_0) (a_1 + j b_1) \\= (a_0 a_1 + b_0 b_1) + j(a_0 b_1 + b_0 a_1)\end{split}$$
Conjugate
$$\overline{z} = a - jb$$
Quadratic Form
$$|z|^2 = z\overline{z} = a^2 - b^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Polar/Exponential Forms

Substituting $j\theta$ for $x$ in $e^{x}$: $$e^{j\theta} = \cosh(\theta) + j\sinh(\theta)$$ which motivates: $$z = r(\cosh(\theta) + j\sinh(\theta)) = re^{j\theta}$$

Operations

Given $z = r e^{j \theta}$ we have:

Multiplication
$$\small z_0 z_1 = (r_0 e^{j \theta_0}) (r_1 e^{j \theta_1}) = (r_0 r_1) e^{j (\theta_0 + \theta_1)}$$
Conjugate
$$\overline{z} = r e^{j (-\theta)}$$
Quadratic Form
$$|z|^2 = z\overline{z} = r^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{r} e^{j (-\theta)}$$

Conversions

Given $z = re^{j\theta}$ we obtain: $$ \begin{align*} a &= r\cosh(\theta)\\\\ b &= r\sinh(\theta) \end{align*} $$

Given $z = a + jb$ we obtain: $$ \begin{align*} r &= \sqrt{a^2 - b^2}\\\\ \theta &= \tanh^{-1}(\frac{b}{a}) \end{align*} $$

Operations
Exponential

Using $e^{x+y} = e^{x} e^{y}$: $$ e^{z} = e^{a + jb} = e^{a} e^{jb} $$

Logarithm

Using $\ln(x y) = \ln(x) + \ln(y)$: $$ \ln(z) = \ln(re^{j\theta}) = \ln(r) + j\theta $$

Exponentiation

$$ z_0^{z_1} = e^{\ln(z_0) z_1} $$

Plots

All $z = a + jb$ with:

  • $|z|^2 = -1$ (green)
  • $|z|^2 = \phantom{+}0$ (orange)
  • $|z|^2 = +1$ (blue)

Unified Family

The similarities in the number systems above suggest a possible unification as follows.

Unified Complex Numbers

Cartesian Forms

Numbers of the form: $$z = a + \kappa b$$ where:

  • $\kappa^{2}= -\K$
Resulting in multiplication table:
$\mathbf{1}$
$\mathbf{\kappa}$
$\mathbf{1}$
$1$
$\kappa$
$\mathbf{\kappa}$
$\kappa$
$-\K$

Operations

Given $z_{\placeholder} = a_{\placeholder} + \kappa b_{\placeholder}$ we have:

Addition
$$\small \begin{split}z_0 + z_1 = (a_0 + \kappa b_0) + (a_1 + \kappa b_1) \\= (a_0 + a_1) + \kappa (b_0 + b_1)\end{split}$$
Additive Inverse
$$-z = -a - \kappa b$$
Multiplication
$$\small \begin{split}z_0 z_1 = (a_0 + \kappa b_0) (a_1 + \kappa b_1) \\= (a_0 a_1 - \K b_0 b_1) + \kappa (a_0 b_1 + b_0 a_1)\end{split}$$
Conjugate
$$\overline{z} = a - \kappa b$$
Quadratic Form
$$|z|^2 = z\overline{z} = a^2 + \K b^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Polar/Exponential Forms

Substituting $\kappa\theta$ for $x$ in $e^{x}$: $$e^{\kappa\theta} = \mathfrak{c}_{\K}(\theta) + \kappa\mathfrak{s}_{\K}(\theta)$$ which motivates: $$z = r(\mathfrak{c}_{\K}(\theta) + \kappa\mathfrak{s}_{\K}(\theta)) = re^{\kappa\theta}$$

Operations

Given $z_{\placeholder} = r_{\placeholder} e^{\kappa \theta_{\placeholder}}$ we have:

Multiplication
$$z_0 z_1 = (r_0 e^{\kappa \theta_0}) (r_1 e^{\kappa \theta_1}) = (r_0 r_1) e^{\kappa (\theta_0 + \theta_1)}$$
Conjugate
$$\overline{z} = r e^{\kappa (-\theta)}$$
Quadratic Form
$$|z|^2 = z\overline{z} = r^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{r} e^{\kappa (-\theta)}$$

Conversions

Given $z = re^{\kappa\theta}$ we obtain: $$ \begin{align*} a &= r\mathfrak{c}_{\K}(\theta)\\\\ b &= r\mathfrak{s}_{\K}(\theta) \end{align*} $$

Given $z = a + \kappa b$ we obtain: $$ \begin{align*} r &= \sqrt{a^2 + \K b^2}\\\\ \theta &= \mathfrak{t}_{\K}^{-1}(\frac{b}{a}) \end{align*} $$

Operations
Exponential

Using $e^{x+y} = e^{x} e^{y}$: $$ e^{z} = e^{a + \kappa b} = e^{a} e^{\kappa b} $$

Logarithm

Using $\ln(x y) = \ln(x) + \ln(y)$: $$ \ln(z) = \ln(re^{\kappa\theta}) = \ln(r) + \kappa\theta $$

Exponentiation

$$ z_0^{z_1} = e^{\ln(z_0) z_1} $$

Quaternion Family

Initially, we consider a few select members of the quaternion family. In the process, we highlight parellels between them. Subsequently, we provide a unified perspective.

Individual Members

Let us consider the quaternions, and eight of their close relatives. Each corresponding to two choices from $\{-1, 0, +1\}$.

Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2} = -1$
  • $j^{2} = -1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
-1
+i
k
k
+j
-i
-1

Semi-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2} = -1$
  • $j^{2} = 0$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
0
0
k
k
+j
0
0

Split-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2} = -1$
  • $j^{2} = +1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
+1
-i
k
k
+j
+i
+1

 

Semi-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= 0$
  • $j^{2}= -1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
-1
+i
k
k
+j
-i
-1

Quarter-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= 0$
  • $j^{2}= 0$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
0
+k
0
j
j
-k
0
0
k
k
0
0
0

Split-Semi-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= 0$
  • $j^{2}= +1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
0
+k
0
j
j
-k
+1
-i
k
k
0
+i
0

 

Split-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= +1$
  • $j^{2}= -1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
-1
+i
k
k
+j
-i
-1

Split-Semi-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= +1$
  • $j^{2}= 0$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
-1
+k
-j
j
j
-k
0
0
k
k
+j
0
0

Split-Quaternions

Cartesian Forms

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= +1$
  • $j^{2}= +1$
  • $ij = k = -ji$
Resulting in multiplication table:
1
i
j
k
1
1
i
j
k
i
i
+1
+k
+j
j
j
-k
+1
-i
k
k
-j
+i
-1

Thankfully, upon closer inspection, we discover that some of these family members are essentially the same except in disguise (i.e. they are isomorphic/equivalent up to a renaming of $i, j, k$).

In the interest of brevity, we proceed directly with the unified family, which covers all the possible cases.

Unified Family

As with the complex number family, we can also unify quaternion family.

Unified Quaternions

Cartesian Form

Numbers of the form: $$z = a + ib + jc + kd$$ where:

  • $i^{2}= -h_0$
  • $j^{2}= -h_1$
  • $ij = k = -ji$
Resulting in multiplication table:
$\mathbf{1}$
$\mathbf{i}$
$\mathbf{j}$
$\mathbf{k}$
$\mathbf{1}$
$1$
$i$
$j$
$k$
$\mathbf{i}$
$i$
$-h_0$
$+k$
$-h_0 j$
$\mathbf{j}$
$j$
$-k$
$-h_1$
$+h_1 i$
$\mathbf{k}$
$k$
$+h_0 j$
$-h_1 i$
$-h_0 h_1$

Operations

Given $z_{\placeholder} = a_{\placeholder} + ib_{\placeholder} + jc_{\placeholder} + kd_{\placeholder}$ we have:

Addition
$$\small \begin{split}z_0 + z_1 = (a_0 + i b_0 + j c_0 + k d_0) + (a_1 + i b_1 + j c_1 + k d_1) \\= (a_0 + a_1) + i(b_0 + b_1) + j(c_0 + c_1) + k(d_0 + d_1)\end{split}$$
Additive Inverse
$$-z = -a - ib - jc - kd$$
Multiplication
$$\small \begin{alignat}{2} z_0 z_1 &=\; &&(a_0 + i b_0 + j c_0 + k d_0) (a_1 + i b_1 + j c_1 + k d_1) \\\\ &= &&\phantom{+ 1} (a_0 a_1 - h_0 b_0 b_1 - h_1 c_0 c_1 - h_0 h_1 d_0 d_1) \\\\ & &&+ i (a_0 b_1 + a_1 b_0 + h_1 c_0 d_1 - h_1 c_1 d_0) \\\\ & &&+ j (a_0 c_1 + a_1 c_0 - h_0 b_0 d_1 + h_0 b_1 d_0) \\\\ & &&+ k (a_0 d_1 + a_1 d_0 + b_0 c_1 - b_1 c_0) \end{alignat} $$
Conjugate
$$\overline{z} = a - ib - jc - kd$$
Quadratic Form
$$|z|^2 = z\overline{z} = a^2 + h_0 b^2 + h_1 c^2 + h_0 h_1 d^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}$$

Real/Imaginary Parts

Alternatively, $z = a + ib + jc + kd$ can be rewritten as: $$ z = a + (ib' + jc' + kd')e = a + \hat{n} e $$ where $b' = \frac{b}{e},\; c' = \frac{c}{e},\; d' = \frac{d}{e}$.

With real part $a$ and imaginary part $\hat{n} e$. $$ \hat{n}^2 = -|\hat{n}|^2 = -\H0 {b'}^2 -\H1 {c'}^2 -\H0\H1 {d'}^2 $$

Note that two different $z_0, z_1$ need not share the same $\hat{n}$.

Polar/Exponential Forms

Substituting $\hat{n} \theta$ for $x$ in $e^{x}$: $$e^{\hat{n}\theta} = \cosk{\N}(\theta) + \hat{n}\sink{\N}(\theta)$$ where $\N = |\hat{n}|^2$ and $\hat{n}$ is imaginary: $$\hat{n} = i b' + j c' + k d'$$ which motivates: $$z = r(\cosk{\N}(\theta) + \hat{n}\sink{\N}(\theta)) = re^{\hat{n}\theta}$$

Operations

Given $z_{\placeholder} = r_{\placeholder} e^{\hat{n} \theta_{\placeholder}}$ we have:

Multiplication
$$z_0 z_1 = (r_0 e^{\hat{n} \theta_0}) (r_1 e^{\hat{n} \theta_1}) = (r_0 r_1) e^{\hat{n} (\theta_0 + \theta_1)}$$
Conjugate
$$\overline{z} = r e^{\hat{n} (-\theta)}$$
Quadratic Form
$$|z|^2 = z\overline{z} = r^2$$
Multiplicative Inverse
$$z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{1}{r} e^{\hat{n} (-\theta)}$$

Conversions

Given $z = re^{\hat{n} \theta}$ we obtain: $$ \begin{align*} a &= r\cosk{\N}(\theta) \\\\ b &= r\sink{\N}(\theta) \end{align*} $$

Given $z = a + \hat{n} b$ we obtain: $$ \begin{align*} r &= \sqrt{a^2 + \N b^2}\\\\ \theta &= \tank{\N}^{-1}(\frac{b}{a}) \end{align*} $$

Operations
Exponential

Using $e^{x+y} = e^{x} e^{y}$: $$ e^{z} = e^{a + \hat{n} b} = e^{a} e^{\hat{n} b} $$

Logarithm

Using $\ln(x y) = \ln(x) + \ln(y)$: $$ \ln(z) = \ln(re^{\hat{n} \theta}) = \ln(r) + \hat{n} \theta $$

Exponentiation

$$ \begin{align*} z_0^{z_1} = e^{\ln(z_0)\, z_1} \\\\ ^{z_1}z_0 = e^{z_1 \ln(z_0)} \end{align*} $$

References

Last Updated:
Contributors: filonik